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Introduction

• This presentation covers models for nonideal 
reactors with a focus on residence time distribution 
(RTD) and reactor flow behavior.



Topics to be Addressed

• - Residence Time Distribution (RTD)

• - Nonideal Flow Patterns

• - Models for Mixing

• - Calculation of Exit Conversion

• - Reactor Performance Assessment



Objectives

• - Understand the principles of nonideal flow in 
reactors

• - Learn how to use RTD for analyzing reactor 
performance

• - Apply mathematical models for mixing and 
conversion calculation

• - Compare different reactor modeling approaches
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Some Guidelines

RTD

Model

Kinetic Data

Exit Concentration

Exit Conversion

1.The model must be mathematically tractable.
   The equations used to describe a chemical reactor should be able to be solved without an 
   inordinate expenditure of human or computer time.

2.The model must realistically describe the characteristics of the nonideal reactor:
   The phenomena occurring in the nonideal reactor must be reasonably described physically, 
   chemically, and mathematically.

3.The model must not have more than two adjustable parameters.
   This constraint is used because an expression with more than two adjustable parameters 
   can be fitted to a great variety of experimental data, and the modeling process in this 
   circumstance is nothing more than an exercise in curve fitting. 
   A one-parameter model is, of course, superior to a two-parameter model if the one-
   parameter model is sufficiently realistic.
   To fair, however, in complex systems (e.g., internal diffusion and conduction, mass transfer 
   limitations) where other parameters may be measured independently, then more than two 
   parameters are quite acceptable. 



Nonideal Flow & Reactor Design

•So far, the reactors we have considered ideal flow patterns
• Residence time of all molecules are identical
• Perfectly mixed CSTRs & batch reactors
• No radial diffusion in a PFR/PBR

• Goal: mathematically describe non-ideal flow and solve design problems 
for reactors with nonideal flow

• Identify possible deviations
• Measurement of residence time distribution
• Models for mixing
• Calculation of exit conversion in real reactors
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One-Parameter Models

~Tanks-in-series model
   modeling tubular reactors as a series of identically sized CSTRs
   a parameter is the number of tanks, n
~Dispersion model
  a modification of the ideal reactor by imposing axial dispersion on plug flow
  a parameter is the dispersion coefficient  

Two-Parameter Models

Using a combination of ideal reactors to model the real reactor

We could model the real reactor as 
two ideal PBRs in parallel with the 
two parameter being the fluid that 
channels, vb, and the reactor dead 
volume, VD. The reactor volume is 
V=VD+VS with v0=vb+vS.

Considering a packed bed reactor with channeling 



Dead Zone

Nonideal Flow in a CSTR

• Ideal CSTR: uniform reactant concentration throughout the vessel
• Real stirred tank

• Relatively high reactant concentration at the feed entrance
• Relatively low concentration in the stagnant regions, called dead zones 

(usually corners and behind baffles) 

Short Circuiting

Dead Zone



Nonideal Flow in a PBR
• Ideal plug flow reactor: all reactant and product molecules at any 

given axial position move at same rate in the direction of the bulk fluid 
flow

• Real plug flow reactor: fluid velocity profiles, turbulent mixing, & 
molecular diffusion cause molecules to move with changing speeds 
and in different directions 

channeling



Measurement of RTD

•RTD is measured experimentally by injecting an inert “tracer” at t=0 and 
measuring the tracer concentration C(t) at the exit as a function of time

•Tracer should be easy to detect & have physical properties similar to the 
reactant

Residence Time Distribution (RTD)

Flow through a reactor is characterized by:
1. The amount of time molecules spend in the reactor, called the RTD
2. Quality of mixing 

RTD ≡ E(t) ≡ “residence time distribution” function

Pulse injection

(PBR or PFR) This plot would 
have the same 
shape as the 
pulse injection 
if the reactor 
had perfect 
plug flow
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Calculation of RTD

• RTD ≡ E(t) ≡ “residence time distribution” function

• RTD describes the amount of time molecules have 
spent in the reactor

( )
( )

( )
0

C t tracer concentration at reactor exit between time t and t+ t 
E t

sum of  tracer concentration at exit for an infinite time
C t dt




= =



C(t)

The C curve

t

Fraction of material leaving the 
reactor that has resided in the 
reactor for a time between t1 & t2

( )
t2

t1

E t dt= 

( )
0

E t dt 1


=
E(t)=0 for t<0 since no fluid can exit before it enters
E(t)≥0 for t>0 since mass fractions are always positive

Fraction of fluid element in the exit stream with age less than t1 is:
( )

t1

0

E t dt



t min 0 1 2 3 4 5 6 7 8 9 10 12 14

C g/m3

0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

A pulse of tracer was injected into a reactor, and the effluent 
concentration as a function of time is in the graph below.  Construct a 
figure of C(t) & E(t) and calculate the fraction of material that spent 
between 3 & 6 min in the reactor 
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Plot C vs time: Tabulate E(t): divide C(t) by the total area under the 
C(t) curve, which must be numerically evaluated 

( ) ( ) ( )
10 14

0 0 10

C t dt C t dt C t dt


= +  

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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0
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C t dt
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+ + + + + 
=  

+ + + + + 

( ) ( )
XN

0 1 2 3 4 N 1 N
X0

t
f x dx f 4f 2f 4f 2f ... 4f f

3
−


= + + + + + +

( )
10

3
0

g min
C t dt 47.4

m


→ =



t min 0 1 2 3 4 5 6 7 8 9 10 12 14

C g/m3

0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

A pulse of tracer was injected into a reactor, and the effluent concentration as 
a function of time is in the graph below.  Construct a figure of C(t) & E(t) and 
calculate the fraction of material that spent between 3 & 6 min in the reactor 
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Plot C vs time: Tabulate E(t): divide C(t) by the total area under the 
C(t) curve, which must be numerically evaluated 

( )
3 3 3

0

g min g min g min
C t dt 47.4 2.6 50

m m m

   
→ = + =

( ) ( )
14

10

2
C t dt 1.5 4 0.6 0 2.6

3
= + + =   

( ) ( )
X2

0 1 2
X0

t
f x dx f 4f f

3


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t min 0 1 2 3 4 5 6 7 8 9 10 12 14

C g/m3

0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

A pulse of tracer was injected into a reactor, and the effluent 
concentration as a function of time is in the graph below.  Construct a 
figure of C(t) & E(t) and calculate the fraction of material that spent 
between 3 & 6 min in the reactor 

Tabulate E(t): divide 
C(t) by the total area 
under the C(t) curve:

( )
3

0

g min
C t dt 50

m

 
=

( )
( )

( )
0

C t
E t

C t dt


=



( )0
0

E t 0
50

= = ( )1
1

E t 0.02
50

= =

( )2
5

E t 0.1
50

= =

t 
min 0 1 2 3 4 5 6 7 8 9 10 12 14

C 
g/m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

( )3
8

E t 0.16
50

= =

Plot E vs time:
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E vs time:
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t min 0 1 2 3 4 5 6 7 8 9 10 12 14
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A pulse of tracer was injected into a reactor, and the effluent 
concentration as a function of time is in the graph below.  
Construct a figure of C(t) & E(t) and calculate the fraction of 
material that spent between 3 & 6 min in the reactor 
t 

min 0 1 2 3 4 5 6 7 8 9 10 12 14

C 
g/m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

Fraction of material that spent between 3 & 6 min in 
reactor = area under E(t) curve between 3 & 6 min  

( ) ( )
X3

0 1 2 3
X0

3
f x dx t f 3f 3f f

8
=  + + +

( ) ( ) ( ) ( )( )
6

3

3
E t 1 0.16 3 0.2 3 0.16 0.12

8
= + + +

Evaluate numerically:

( )
6

3

E t 0.51→ =



( )
t

out 0
0

C C E t dt= 

Step-Input to Determine E(t)

Disadvantages of pulse input: 
• Injection must be done in a very short time
•  Can be inaccurate when the c-curve has a long tail
•  Amount of tracer used must be known

( )

0 step

C td
E(t)

dt C

 
=  

 

Alternatively, E(t) can be determined using a step input: 
• Conc. of tracer is kept constant until outlet conc. =  inlet conc. 

injection detection

The C curve

t

Cin

t t

Cout

t

C0
C0



Questions
1. Which of the following graphs would you expect to see if a pulse tracer 
test were performed on an ideal CSTR? 
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2. Which of the following graphs would you expect to see if a pulse tracer 
test were performed on a PBR that had dead zones? 
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( ) ( )
t

1 F t E t dt


− = 

Cumulative RTD Function F(t)

F(t) = fraction of effluent that has been in the reactor for less than time t

( )
t

0

F(t) E t dt= 

( )

( )

( )

F t 0 when t<0

F t 0 when t 0

F 1

=

 

 =

t

F(t)

80% of the molecules spend 40 
min or less in the reactor

40

0.8



F(t) = fraction of effluent that has been in the reactor for less than time t

Relationship between E & F Curves

E(t)= Fraction of material leaving reactor that was inside for a time between t1 & t2

( )
t

0

F(t) E t dt= 

( )
( )

( )
0

C t
E t

C t dt


=


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 t

C(t)

t
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Nearly ideal 
PFR

Nearly ideal 
CSTR

PBR with 
channeling & 
dead zones

t

C(t)

CSTR with 
dead zones

40

( )
t

0

F(t) E t dt= 

t (min)

F(t)

0.8

80% of the molecules 
spend 40 min or less in 
the reactor

( )

( )

( )

F t 0 when t<0

F t 0 when t 0

F 1

=

 

 =

( ) ( )
t

1 F t E t dt


− = 

F(t)=fraction of effluent in the reactor less for than time t

Boundary Conditions for the 
Cum RTD Function F(t)



Mean Residence Time, tm

• For an ideal reactor, the space time  is defined as V/0

• The mean residence time tm is equal to  in either ideal or nonideal reactors

( )

( )
( )0

m 0
0

tE t dt
t tE t dt

E t dt








= = =


m

0

V
t


= =

( ) ( )
22

m0 t t E t dt = −

By calculating tm, the reactor V can be determined from a tracer experiment

The spread of the distribution (variance):

Space time  and mean residence time tm would be equal if the following two 
conditions are satisfied:

• No density change
• No backmixing

In practical reactors the above two may not be valid, hence there will be a 
difference between them



RTD in Ideal Reactors

All the molecules leaving a PFR have spent ~ the same amount of time in the PFR, 
so the residence time distribution function is:

( ) ( ) 0E t t    where =V   = −

( )
when x 0

x
0 when x 0


 =

= 


( )x dx 1
− = ( ) ( ) ( )g x x dx g  

− − =

The Dirac delta function satisfies:

( )m
0

t t t dt=  


= −

Zero everywhere 
but one point

…but =1 over the 
entire interval



Significance of Mixing

•RTD provides information on how long material has been in the reactor
•RTD does not provide information about the exchange of matter within the 

reactor (i.e., mixing)!

•For a 1st order reaction:
( )

dX
k 1 X

dt
= −

•Concentration does not affect the rate of conversion, so RTD is sufficient to 
predict conversion

•But concentration does affect conversion in higher order reactions, so we 
need to know the degree of mixing in the reactor 

•Macromixing: produces a distribution of residence times without specifying how 
molecules of different age encounter each other and are distributed inside of the 
reactor

•Micromixing: describes how molecules of different residence time encounter 
each other in the reactor



Quality of Mixing

•RTDs alone are not sufficient to determine reactor performance
•Quality of mixing is also required
Goal: use RTD and micromixing models to predict conversion in real reactors

2 Extremes of Fluid Mixing
Maximum mixedness: molecules are 
free to move anywhere, like a 
microfluid.  This is the extreme case of 
early mixing



Quality of Mixing

•RTDs alone are not sufficient to determine reactor performance
•Quality of mixing is also required
Goal: use RTD and micromixing models to predict conversion in real reactors

2 Extremes of Fluid Mixing
Complete segregation: molecules of a 
given age do not mix with other 
globules.  This is the extreme case of 
late mixing

Maximum mixedness: molecules are 
free to move anywhere, like a 
microfluid.  This is the extreme case of 
early mixing



• Flow is visualized in the form of globules
• Each globule consists of molecules of the same residence time
• Different globules have different residence times
• No interaction/mixing between different globules

Complete Segregation Model

Mixing of different 
‘age groups’ at the 
last possible 
moment

( ) ( )jA A j jX X t E t t= 

The mean conversion is the average conversion of the various globules in the 
exit stream:

Conversion achieved after 
spending time tj in the reactor

Fraction of globules that spend 
between tj and tj + t in the reactor

( ) ( )
t 0

A A
0

X X t E t dt


 →
⎯⎯⎯⎯→ = 

XA(t) is from the batch 
reactor design equation



Complete Segregation Example

First order reaction, A→Products

A
A0 A

dX
N r V

dt
= −

Batch reactor 
design equation:

A
A0 A

dX
N kC V

dt
→ =

( )A
A0 A0 A

dX
N kC 1 X V

dt
→ = − ( )A

A0 A0 A
dX

N kN 1 X
dt

→ = −

( )A
A

dX
k 1 X

dt
→ = − ( ) kt

AX t 1 e−→ = −

To compute conversion for a reaction with a 1st order rxn and complete 
segregation, insert E(t) from tracer experiment and XA(t) from batch reactor 
design equation into:  

( ) ( )A A
0

X X t E t dt


=  & integrate 



Maximum Mixedness Model

In a PFR: as soon as the fluid enters the reactor, it is completely mixed radially 
with the other fluid already in the reactor. Like a PFR with side entrances, where 
each entrance port creates a new residence time:

 +

 → 0

V = 0 V = V0

: time it takes for fluid to move from a particular point to end of the reactor

0

E() Volumetric flow rate of fluid fed into side ports of reactor in interval 
between  +  & 
Volumetric flow rate of fluid fed to reactor at : ( ) ( ) ( )0 0E d 1 F      = = −   

0E( )  

  +

Volume of fluid with life expectancy between  +  & :

( )0V 1 F   = −   

() volumetric flow rate at , = flow that entered at + plus what entered 
through the sides

fraction of effluent in reactor for less than time t

 →∞







Maximum Mixedness & Polymath

Also need to replace  because Polymath cannot calculate as  gets smaller

( )

( )
A A

A
A0

EdX r
X

d C 1 F



 
= +

−

•E(t) must be specified  
•Often it is an expression that fits the experimental data
•2 curves, one on the increasing side, and a second for the decreasing side
•Use the IF function to specify which E is used when

E

t

E1 E2

z T    where T is the longest time measured= −
( )

( )
A A

A
A0

E T zdX r
X

dz C 1 F T z

−
= − −

− − Note that the sign on 
each term changes

Mole balance on A 
gives:

fraction of effluent in reactor for less than time t

residence time distribution function

See section 13.8 in 
book



Review: Nonideal Flow & Reactor Design

Real CSTRs
• Relatively high reactant conc at 

entrance
• Relatively low conc in stagnant 

regions, called dead zones 
(corners & behind baffles) 

Dead Zone

Dead Zone

Short Circuiting

Real PBRs
•  fluid velocity profiles, turbulent 

mixing, & molecular diffusion 
cause molecules to move at 
varying speeds & directions 

channeling

Dead zones

Goal: mathematically describe non-ideal flow and solve design problems for reactors with 
nonideal flow



RTD is experimentally determined by injecting an inert “tracer” at t=0 and 
measuring the tracer concentration C(t) at exit as a function of time

Residence Time Distribution (RTD)

RTD ≡ E(t) ≡ “residence time distribution” function

RTD describes the amount of time molecules have spent in the reactor

( )
( )

( )0

C t tracer conc at exit between t & t+ t 
E t

sum of  tracer conc at exit for infinite timeC t dt


= =



Measurement of RTD

↑

Pulse injection
↓

Detection

Reactor X C(t)

The C curve

t

Fraction of material leaving reactor that has 
been inside reactor for a time between t1 & t2 ( )

t2
t1

E t dt= 

( )
0

E t dt 1


=
E(t)=0 for t<0 since no fluid can exit before it enters
E(t)≥0 for t>0 since mass fractions are always positive



t

E(t)

 t

E(t)

t

E(t)



Nearly ideal 
PFR

Nearly ideal 
CSTR

PBR with dead 
zones

t

E(t)

CSTR with 
dead zones

The fraction of the exit stream that has resided in the reactor for a period of 
time shorter than a given value t:

( ) ( )

( ) ( )

t
0

t

E t dt F t

E t dt 1 F t

=

= −

F(t) is a cumulative distribution function

40

0.8
80% of the molecules 
spend 40 min or less in 
the reactor

( )

( )

( )

F t 0 when t<0

F t 0 when t 0

F 1

=

 

 =

Nice multiple 
choice 
question



Review: Mean Residence Time, tm

• For an ideal reactor, the space time  is defined as V/0

• The mean residence time tm is equal to  in either ideal or nonideal reactors

( )

( )
( )0

m 0
0

tE t dt
t tE t dt

E t dt








= = =


m

0

V
t


= =

( ) ( )
22

m0 t t E t dt = −

By calculating tm, the reactor V can be determined from a tracer experiment

The spread of the distribution (variance):

Space time  and mean residence time tm would be equal if the following two 
conditions are satisfied:

• No density change
• No backmixing

In practical reactors the above two may not be valid, hence there will be a 
difference between them



• Flow is visualized in the form of globules
• Each globule consists of molecules of the same residence time
• Different globules have different residence times
• No interaction/mixing between different globules

Review: Complete Segregation Model

Mixing of different 
‘age groups’ at the 
last possible 
moment

( ) ( )jA A j jX X t E t t= 

The mean conversion is the average conversion of the various globules in the 
exit stream:

Conversion achieved after 
spending time tj in the reactor

Fraction of globules that spend 
between tj and tj + t in the reactor

( ) ( )
t 0

A A
0

X X t E t dt


 →
⎯⎯⎯⎯→ =  XA(t) is from the batch 

reactor design equation



Review: Maximum Mixedness Model

In a PFR: as soon as the fluid enters the reactor, it is completely mixed radially with the 
other fluid already in the reactor. Like a PFR with side entrances, where each entrance 
port creates a new residence time:

 +

 → 0

V = 0 V = V0
: time it takes for fluid to move from a particular point to end of the reactor

0

E() Volumetric flow rate of fluid fed into side ports of reactor in interval 
between  +  & 

Volumetric flow rate of fluid fed to reactor at : ( ) ( ) ( )0 0E d 1 F      = = −   

0E( )  

  +

Volume of fluid with life expectancy between  +  & :

( )0V 1 F   = −   

() volumetric flow rate at , = flow that entered at + plus what entered 
through the sides

fraction of effluent that in reactor for less than time t

 →∞







t min 0 1 2 3 4 5 6 7 8 9 10 12 14

C g/m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given 
in the table below.  The irreversible, liquid-phase,  nonelementary rxn A+B→C+D,            -rA=kCACB

2 will 
be carried out isothermally at 320K in this reactor.  Calculate the conversion for (1) an ideal PFR and 
(2) for the complete segregation model.  

CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K



t min 0 1 2 3 4 5 6 7 8 9 10 12 14

C g/m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

Start with PFR design eq & see how far can we get:

A A

A0

dX r

dV F

−
=

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given 
in the table below.  The irreversible, liquid-phase,  nonelementary rxn A+B→C+D,          -rA=kCACB

2 
will be carried out isothermally at 320K in this reactor.  Calculate the conversion for (1) an ideal PFR 
and (2) for the complete segregation model.  

CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K

2
A A B

A0 0

dX kC C

dV C 
→ = ( )A A0 AC C 1 X= − ( )B B0 AC C 1 X= −

( )
32

A0 B0 AA

A0 0

kC C 1 XdX

dV C 

−
→ =

( )

2X VA
B0A

3
00 0A

kCdX
dV

1 X 
→ = 

−

Get like terms 
together & integrate

( )

XA 2
B0

2
0A 0

kC1
V

2 1 X 


→ =

− 
( )

 2
B02

A

1
1 2kC

1 X
→ − =

−
A 2

B0

1
X 1

2kC 1
→ = −

+



t min 0 1 2 3 4 5 6 7 8 9 10 12 14

C g/m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given 
in the table below.  The irreversible, liquid-phase,  nonelementary rxn A+B→C+D,             -rA=kCACB

2 will 
be carried out isothermally at 320K in this reactor.  Calculate the conversion for (1) an ideal PFR and 
(2) for the complete segregation model.  

CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K

How do we 
determine ?

For an ideal reactor,  = tm

( )m 0 tE tt dt= 

Use numerical method 
to determine tm:

t min 0 1 2 3 4 5 6 7 8 9 10 12 14

C g/m3
0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

t*E(t) 0 0.02 0.2 0.48 0.8 0.8 0.72 0.56 0.48 0.396 0.3 0.144 0

( ) ( ) ( )
10 14

m
0 0 10

t tE t dt tE t dt tE t dt


= = +  

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

10

0

0 4 0.02 2 0.2 4 0.48 2 0.8 4 0.81
tE t dt 4.57

3 2 0.72 4 0.56 2 0.48 4 0.396 0.3

+ + + + + 
= =  

+ + + + + 

( ) ( )
14

10

2
tE t dt 0.3 4 0.144 0 0.584

3
= + + =   

mt 4.57 0.584 5.15min→ = + =

A 2
B0

1
X 1

2kC 1
= −

+



t min 0 1 2 3 4 5 6 7 8 9 10 12 14

C g/m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given 
in the table below.  The irreversible, liquid-phase,  nonelementary rxn A+B→C+D,               -rA=kCACB

2 will 
be carried out isothermally at 320K in this reactor.  Calculate the conversion for (1) an ideal PFR and 
(2) for the complete segregation model.  

CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K
t min 0 1 2 3 4 5 6 7 8 9 10 12 14

C g/m3
0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

t*E(t) 0 0.02 0.2 0.48 0.8 0.8 0.72 0.56 0.48 0.396 0.3 0.144 0

For an ideal PFR reactor,  = tm

A,PFRX 0.40=

( )

= −
  

+     

A,PFR 22

2

1
X 1

L mol
2 176 0.0313 5.15min 1

Lmol min

mt 5.15min = =( )m 0t tE t dt= 
A 2

B0

1
X 1

2kC 1
= −

+



t min 0 1 2 3 4 5 6 7 8 9 10 12 14

C g/m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

Segregation model: ( ) ( )A A
0

X X t E t dt


=  XA(t) is from batch reactor design eq

For a pulse tracer expt, the effluent concentration C
in the table below.  The irreversible, liquid-phase,  nonelementary rxn A+(t) & RTD 
function E(t) are given B→C+D,               -rA=kCACB

2 will be carried out isothermally 
at 320K in this reactor.  Calculate the conversion for an ideal PFR, the complete 
segregation model and maximum mixedness model.  CA0=CB0=0.0313 mol/L & 
k=176 L2/mol2·min at 320K

Numerical method
1. Solve batch reactor design equation to determine eq for XA

2. Determine XA for each time
3. Use numerical methods to determine X̄  A

Polymath Method
1. Use batch reactor design equation to find eq for XA

2. Use Polymath polynomial curve fitting to find equation for E(t)
3. Use Polymath to determine X̄  A



( )

2
B02

A

1
1 2kC t

1 X
→ − =

−

t min 0 1 2 3 4 5 6 7 8 9 10 12 14

C g/m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

Segregation model: ( ) ( )A A
0

X X t E t dt


=  XA(t) is from batch reactor design eq

A
A0 A

dX
N r V

dt
= − ( )A0 A0

32A
B0 A

dX
k C 1

t
C

d
N VX→ = −

Batch design eq:

Stoichiometry:

( )A A0 AC C 1 X= −

( )B B0 AC C 1 X= −

A0 A0N C V=

( )
32A

B0 A
dX

kC 1 X
dt

→ = −

( )

X tA 2A
B03

0 0A

dX
kC dt

1 X
→ = 

−

A 2
B0

1
X 1

1 2kC t
→ = −

+

( )

XA
2

B02
A 0

1
kC t

2 1 X


→ =

− 
2

A A Br kC C− =

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given 
in the table below.  The irreversible, liquid-phase,  nonelementary rxn A+B→C+D,               -
rA=kCACB

2 will be carried out isothermally at 320K in this reactor.  Calculate the conversion 
for an ideal PFR, the complete segregation model and maximum mixedness model.  
CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K



Segregation model:

( ) ( )A A
0

X X t E t dt


=  A 2
B0

1
X 1

1 2kC t
= −

+

Numerical method
( )

( )
A 0 1

1
X 1 0

1 0.3429min 0−
= − =

+

( )
( )

A 1 1

1
X 1 0.137

1 0.3429min 1min−
= − =

+

1

1
1

1 0.3429min t−
= −

+

t min 0 1 2 3 4 5 6 7 8 9 10 12 14

C 
g/m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

XA

Plug in each t & solve

For a pulse tracer expt, the effluent concentration C(t) & RTD 
function E(t) are given 
in the table below.  The irreversible, liquid-phase,  nonelementary 
rxn A+B→C+D,   -rA=kCACB

2 will be carried out isothermally at 320K in 
this reactor.  Calculate the conversion for an ideal PFR, the 
complete segregation model and maximum mixedness model.  
CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K



t min 0 1 2 3 4 5 6 7 8 9 10 12 14

C 
g/m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

XA 0 0.137 0.23 0.298 0.35 0.39 0.428 0.458 0.483 0.505 0.525 0.558 0.585

Segregation 
model: ( ) ( )A A

0

X X t E t dt


=  A 2
B0

1
X 1

1 2kC t
= −

+

Numerical method

1

1
1

1 0.3429min t−
= −

+

( ) ( ) ( ) ( ) ( ) ( )


= = + A A

140

A
10

1

A
00

X t E t d X t E t dX X t E t dt tt

( ) ( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )

+ + + 
 

= + + + +  
 + + + 

10

A
0

0 4 0.137 0.02 2 0.23 0.1 4 0.298 0.16
1

X t E t dt 2 0.35 0.2 4 0.39 0.16 2 0.428 0.12 4 0.458 0.08
3

2 0.483 0.06 4 0.505 0.044 0.525 0.03

( ) ( ) =
10

A
0

X t E t dt 0.35

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given 
in the table below.  The irreversible, liquid-phase,  nonelementary rxn A+B→C+D,               -
rA=kCACB

2 will be carried out isothermally at 320K in this reactor.  Calculate the conversion 
for an ideal PFR, the complete segregation model and maximum mixedness model.  
CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K



t min 0 1 2 3 4 5 6 7 8 9 10 12 14

C 
g/m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

XA 0 0.137 0.23 0.298 0.35 0.39 0.428 0.458 0.483 0.505 0.525 0.558 0.585

Segregation 
model: ( ) ( )A A

0

X X t E t dt


=  A 2
B0

1
X 1

1 2kC t
= −

+

Numerical method

1

1
1

1 0.3429min t−
= −

+

( ) ( ) ( ) ( )


= = + 
14

A
10

A A
0

0. X t E t dtX X t E t d 5t 3

( ) ( ) ( )( ) ( )( ) ( )= + + =   

14

A
10

2
X t E t dt 0.525 0.03 4 0.558 0.012 0.585 0 0.0425

3

( ) ( )


= = + → =A A A
0

0. 0.04X X t E t dt X35 0.39

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given 
in the table below.  The irreversible, liquid-phase,  nonelementary rxn A+B→C+D,               -
rA=kCACB

2 will be carried out isothermally at 320K in this reactor.  Calculate the conversion 
for an ideal PFR, the complete segregation model and maximum mixedness model.  
CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K



t min 0 1 2 3 4 5 6 7 8 9 10 12 14

C 
g/m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

XA 0 0.137 0.23 0.298 0.35 0.39 0.428 0.458 0.483 0.505 0.525 0.558 0.585

Alternative approach: segregation model by Polymath:

( ) ( )A A
0

X X t E t dt


=  A 2
B0

1
X 1

1 2kC t
= −

+

CB0=0.0313

k=176 Need an equation for E(t)

Use Polymath to fit the E(t) vs t data in the table to a polynomial

( ) ( )A
A

dX
X t E t

dt
=

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given 
in the table below.  The irreversible, liquid-phase,  nonelementary rxn A+B→C+D,               -
rA=kCACB

2 will be carried out isothermally at 320K in this reactor.  Calculate the conversion 
for an ideal PFR, the complete segregation model and maximum mixedness model.  
CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K



time E(t)

E(t) = 0 at t=0

Gave best fit

Model: C02= a1*C01 + a2*C01^2 + a3*C01^3 + a4*C01^4

Final Equation: E= 0.0889237*t -0.0157181*t2 + 0.0007926*t3 – 8.63E-6*t4

a1=0.0889237
a2= -0.0157181
a3= 0.0007926
a4= -8.63E-06

For the irreversible, liquid-
phase,  nonelementary rxn 

A+B→C+D,  -rA=kCACB
2

Calculate the XA using the 
complete segregation model 

using Polymath



A+B→C+D
-rA=kCACB

2

Complete segregation model by Polymath

AX 0.36=
Segregation model by Polymath:



t min 0 1 2 3 4 5 6 7 8 9 10 12 14

C g/m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

Maximum mixedness model: ( )

( )
A A

A
A0

EdX r
X

d C 1 F



 
= +

−
=time

Polymath cannot solve because →0 (needs to increase)

( )
32

A A0 B0 Ar kC C 1 X− = − A0 B0C C 0.0313mol L= =
2

2

L
k 176

mol min
=



Substitute  for z, where z=T ̅- where T̅=longest time interval (14 min)

( )
( )

A A
A

A0

E T zdX r
X

dz C 1 F T z

 −
= − + 

 − − 
( )

dF
E T z

dz
= − −

dF
E

d
=

E must be in terms of T ̅-z.  
Since T̅-z= & =t, simply 
substitute  for t

E()= 0.0889237*-0.0157181*2 + 
0.0007926*3 – 8.63E-6*4

F() is a cumulative distribution function

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given 
in the table below.  The irreversible, liquid-phase,  nonelementary rxn A+B→C+D,               -
rA=kCACB

2 will be carried out isothermally at 320K in this reactor.  Calculate the conversion 
for an ideal PFR, the complete segregation model and maximum mixedness model.  
CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K



Maximum Mixedness Model, nonelementary reaction

 A+B→C+D

 -rA=kCACB
2

( )
( )

A A
A

A0

E T zdX r
X

dz C 1 F T z

 −
= − + 

 − − 
( )

dF
E T z

dz
= − −

Eq for E describes RTD function only on 
interval t= 0 to 14 minutes, otherwise E=0

Denominator 
cannot = 0

z T T z = − → = −

XA, maximum mixedness = 0.347



t min 0 1 2 3 4 5 6 7 8 9 10 12 14

C g/m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

For a pulse tracer expt, C(t) & E(t) are given in the table below. The irreversible, 
liquid-phase,  nonelementary rxn A+B→C+D, -rA=kCACB

2 will be carried out in 
this reactor. Calculate the conversion for the complete segregation model 
under adiabatic conditions with T0= 288K, CA0=CB0=0.0313 mol/L,  k=176 
L2/mol2·min at 320K, H°RX=-40000 cal/mol, E/R =3600K, 
CPA=CPB=20cal/mol·K & CPC=CPD=30 cal/mol·K

Polymath eqs for segregation model: ( ) ( )A
A

dX
X t E t

dt
=

E(t)= 0.0889237*t -0.0157181*t2 + 0.0007926*t3 – 8.63E-6*t4

Express k as 
function of T: ( )

2

2

L 1 1
k T 176 exp 3600K

320K Tmol min

  
= −  

  

( )
32A

B0 A
dX

kC 1 X
dt

= −

Need equations from energy balance.  For adiabatic operation:

( )
n

RX R A i p 0 A P Ri
i 1

n

i p A Pi
i 1

H T X C T X C T

T

C X C

=

=

 − +  + 
 

=
 

 +  
 



t min 0 1 2 3 4 5 6 7 8 9 10 12 14

C 
g/m3

0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

For a pulse tracer expt, C(t) & E(t) are given in the table below. The 
irreversible, liquid-phase,  nonelementary rxn A+B→C+D, -rA=kCACB

2 will 
be carried out in this reactor. Calculate the conversion for the complete 
segregation model under adiabatic conditions with T0= 288K, 
CA0=CB0=0.0313 mol/L,  k=176 L2/mol2·min at 320K, H°RX=-40000 

cal/mol, E/R =3600K, CPA=CPB=20cal/mol·K & CPC=CPD=30 cal/mol·K

Energy balance for 
adiabatic operation:

( )p
cal cal

C 30 30 20 20 20
mol K mol K

 = + − − =
 

( )
n

RX R A i p 0 A P Ri
i 1

n

i p A Pi
i 1

H T X C T X C T

T

C X C

=

=

 − +  + 
 

=
 

 +  
 

A

A

cal cal
1702 X 576

mol molT
cal cal

2 X
mol K mol K

+
→ =

 
+  

  

n

i p p Pi A B
i 1

cal
C C C 40

mol K=

 = + =


( ) ( )A
A

dX
X t E t

dt
=

E(t)= 0.0889237*t -0.0157181*t2 + 
0.0007926*t3 – 8.63E-6*t4

( )
32A

B0 A
dX

kC 1 X
dt

= −

( )
2

2

L 1 1
k T 176 exp 3600K

320K Tmol min

  
= −  

  

Not zero!



Segregation model, adiabatic operation, 
nonelementary reaction kinetics

AX 0.93=

A+B→C+D 
 -rA=kCACB

2



The following slides show how the same problem would be solved 
and the solutions would differ if the reaction rate was still -
rA=kCACB

2 but the reaction was instead elementary: A+2B→C+D

These slides may be provided as an extra example problem that the 
students may study on there own if time does not permit doing it in 
class.



t min 0 1 2 3 4 5 6 7 8 9 10 12 14

C g/m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

Start with PFR design eq & 
see how far can we get:

A A

A0

dX r

dV F

−
=

For a pulse tracer expt, the effluent concentration C(t) & RTD 
function E(t) are given in the table below.  The irreversible, 
liquid-phase, elementary rxn A+2B→C+D,           -

rA=kCACB
2 will be carried out isothermally at 320K in this 

reactor. Calculate the conversion for an ideal PFR, the 
complete segregation model and maximum mixedness 
model.  CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K

2
A A B

A0 0

dX kC C

dV C 
→ =

( )A A0 AC C 1 X= −

( )( )
22

A0 B0 A AA

A0

kC C 1 X 1 2XdX

d C

− −
→ = ( )( )

22A
B0 A A

dX
kC 1 X 1 2X

d
→ = − −

Could solve with Polymath if we knew the 
value of 

CB0 = 0.0313 k = 0.0313

( )b B B0 A
b 2

= = C C 1 2X
a 1

 → = −

2
A A B

A0

dX kC C

d C
→ =



t min 0 1 2 3 4 5 6 7 8 9 10 12 14

C g/m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given 
in the table below.  The irreversible, liquid-phase, elementary rxn A+2B→C+D,               -
rA=kCACB

2 will be carried out isothermally at 320K in this reactor. Calculate the conversion 
for an ideal PFR, the complete segregation model and maximum mixedness model.  
CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K

How do we 
determine ?

For an ideal reactor,  = tm

( )m 0t tE t dt= 

Use numerical method 
to determine tm:

t min 0 1 2 3 4 5 6 7 8 9 10 12 14

C g/m3
0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

t*E(t) 0 0.02 0.2 0.48 0.8 0.8 0.72 0.56 0.48 0.396 0.3 0.144 0

( ) ( ) ( )
10 14

m
0 0 10

t tE t dt tE t dt tE t dt


= = +  

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

10

0

0 4 0.02 2 0.2 4 0.48 2 0.8 4 0.81
tE t dt 4.57

3 2 0.72 4 0.56 2 0.48 4 0.396 0.3

+ + + + + 
= =  

+ + + + + 

( ) ( )
14

10

2
tE t dt 0.3 4 0.144 0 0.584

3
= + + =   

mt 4.57 0.584 5.15min→ = + =

( )( )
22A

B0 A A
dX

kC 1 X 1 2X
d

= − −



t min 0 1 2 3 4 5 6 7 8 9 10 12 14

C g/m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given 
in the table below.  The irreversible, liquid-phase, elementary rxn A+2B→C+D,               -
rA=kCACB

2 will be carried out isothermally at 320K in this reactor. Calculate the conversion 
for an ideal PFR, the complete segregation model and maximum mixedness model.  
CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K

t min 0 1 2 3 4 5 6 7 8 9 10 12 14

C g/m3
0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

t*E(t) 0 0.02 0.2 0.48 0.8 0.8 0.72 0.56 0.48 0.396 0.3 0.144 0

mt 5.15min = =

For an ideal reactor,  = tm

( )m 0t tE t dt= 

A,PFRX 0.29=

( )( )
22A

B0 A A
dX

kC 1 X 1 2X
d

= − −

Final XA 
corresponds to 

=5.15 min



( ) ( )A
A

dX
X t E t

dt
→ =

t min 0 1 2 3 4 5 6 7 8 9 10 12 14

C g/m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

( ) ( )A A
0

X X t E t dt


= 
XA(t) is from 

batch reactor 
design eq

A
A0 A

dX
N r V

dt
= −

2
A A Br kC C− =

( )( )
22A

A0 B0 A AA0
dX

N k C 1 X 1 2X
dt

C V→ = − −
Batch reactor 
design eq:

Stoichiometry:

( )A A0 AC C 1 X= −

( )B B0 AC C 1 2X= −

A0 A0N C V=

( )( )
22A

B0 A A
dX

kC 1 X 1 2X
dt

→ = − −

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given 
in the table below.  The irreversible, liquid-phase, elementary rxn A+2B→C+D,               -

rA=kCACB
2 will be carried out isothermally at 320K in this reactor. Calculate the conversion 

for an ideal PFR, the complete segregation model and maximum mixedness model.  
CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K

CB0=0.0313k=176 
Best-fit polynomial line 
for E(t) vs t calculated 
by Polymath (slide 19)

Segregation model 
with Polymath:

E(t)= 0.0889237*t -0.0157181*t2 + 0.0007926*t3 – 8.63E-6*t4



Segregation model, isothermal operation, elementary 
rxn: A+2B→C+D

A,segX 0.27=



t min 0 1 2 3 4 5 6 7 8 9 10 12 14

C g/m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

Maximum mixedness model:

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given 
in the table below.  The irreversible, liquid-phase, elementary rxn A+2B→C+D,                -
rA=kCACB

2 will be carried out isothermally at 320K in this reactor.  Calculate the conversion 
for an ideal PFR, the complete segregation model and maximum mixedness model.  
CA0=CB0=0.0313 mol/L &  k=176 L2/mol2·min at 320K

( )

( )
A A

A
A0

EdX r
X

d C 1 F



 
= +

−
=time

Polymath cannot solve 
because →0 (must 
increase)

( )( )
22

A A0 B0 A Ar kC C 1 X 1 2X− = − −

A0 B0C C 0.0313mol L= =

2

2

L
k 176

mol min
=



Substitute  for z, where z=T ̅- where T̅=longest time interval (14 min)

( )
( )

A A
A

A0

E T zdX r
X

dz C 1 F T z

 −
= − + 

 − − 
( )

dF
E T z

dz
= − −

dF
E

d
=

E must be in terms of T̅-z.  
Since T ̅-z= & =t, simply 
substitute  for t

E()= 0.0889237*-0.0157181*2 + 
0.0007926*3 – 8.63E-6*4



Maximum Mixedness Model, elementary reaction 
A+2B→C+D, -rA=kCACB

2

( )
( )

A A
A

A0

E T zdX r
X

dz C 1 F T z

 −
= − + 

 − − 
( )

dF
E T z

dz
= − −

Eq for E describes RTD function only on 
interval t= 0 to 14 minutes, otherwise E=0

Denominator 
cannot = 0

z T T z = − → = −

XA, maximum mixedness = 0.25



t min 0 1 2 3 4 5 6 7 8 9 10 12 14

C g/m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

For a pulse tracer expt, C(t) & E(t) are given in the table below. The irreversible, liquid-
phase,  elementary rxn A+2B→C+D, -rA=kCACB

2 will be carried out in this reactor. Calculate 
the conversion for the complete segregation model under adiabatic conditions with T0= 
288K, CA0=CB0=0.0313 mol/L,  k=176 L2/mol2·min at 320K, H°RX=-40000 cal/mol, E/R 
=3600K, CPA=CPB=20cal/mol·K & CPC=CPD=30 cal/mol·K

Polymath eqs for 
segregation model: ( ) ( )A

A
dX

X t E t
dt

=

E(t)= 0.0889237*t -0.0157181*t2 + 0.0007926*t3 – 8.63E-6*t4

Express k as 
function of T: ( )

2

2

L 1 1
k T 176 exp 3600K

320K Tmol min

  
= −  

  

( )( )
22A

B0 A A
dX

kC 1 X 1 2X
dt

= − −

Need equations from energy balance.  For adiabatic operation:

( )
n

RX R A i p 0 A P Ri
i 1

n

i p A Pi
i 1

H T X C T X C T

T

C X C

=

=

 − +  + 
 

=
 

 +  
 



t min 0 1 2 3 4 5 6 7 8 9 10 12 14

C g/m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

For a pulse tracer expt, C(t) & E(t) are given in the table below. The irreversible, liquid-
phase,  elementary rxn A+2B→C+D, -rA=kCACB

2 will be carried out in this reactor. Calculate 
the conversion for the complete segregation model under adiabatic conditions with T0= 
288K, CA0=CB0=0.0313 mol/L,  k=176 L2/mol2·min at 320K, H°RX=-40000 cal/mol, E/R 
=3600K, CPA=CPB=20cal/mol·K & CPC=CPD=30 cal/mol·K

Adiabatic EB:
( )( )pC 30 30 2 20 20 0 = + − − =( )

n

RX R A i p 0 A P Ri
i 1

n

i p A Pi
i 1

H T X C T X C T

T

C X C

=

=

 − +  + 
 

=
 

 +  
 

n

i p p Pi A B
i 1

cal
C C C 40

mol K=

 = + =


( ) ( )A
A

dX
X t E t

dt
=

E(t)= 0.0889237*t -0.0157181*t2 + 
0.0007926*t3 – 8.63E-6*t4

( )( )
22A

B0 A A
dX

kC 1 X 1 2X
dt

= − −

( )
2

2

L 1 1
k T 176 exp 3600K

320K Tmol min

  
= −  

  

AT 288K 1000X= +



Segregation model, adiabatic operation, 
elementary reaction kinetics

A+2B→C+D 
 -rA=kCACB

2

X̅A = 0.50
Why so much lower 
than before?

Because B is completely 
consumed by XA=0.5
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Tanks-in-Series (T-I-S) Model

We are first going to develop the RTD equation for three tanks in series (Figure 14-2) and 

then generalize to n reactors in series to derive an equation that gives the number of tanks 

in series that best fits the RTD data.

1
1

1 vC
dt

dC
V −=

Considering a tracer pulse injected into 

the first reactor of three equally 

sized CSTRs in series

11
/t

0
V/v t

01 eCeCC
−−

==
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0
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100
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dt)t(Cv
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

==
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i vCvC
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22 e
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2 e
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−
−

−


== n

1n

e
)!1n(

)n(n
)t(E)(E

n/i =

n→, the behavior of the system approaches 

that of a plug-flow reactor
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For a first order reaction,

n
i )k1(

1
1X

+
−=

nv

V

0

i = n may be a noninteger.

For reactions other than first order,

an integer number of reactors must be used.
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Example 2-1

Show that XT-I-S=XMM for a first-order reaction

BA
k

⎯→⎯

Solution

For a first-order reaction, 

M Mseg XX =

Therefore we only need to show Xseg=XT-I-S.

For a first-order reaction in a batch reactor the conversion is

k te1X −−=


 − −

−=−==
0

k t

0

k t

0
dt)t(Ee1dt)t(E)e1(dt)t(E)t(XX

Segregation model

error
2

tk
kt1e

22
kt ++−=−




−=












−=

0

2
2

00

22

dt)t(Et
2

k
dt)t(tEkdt)t(E

2

tk
ktX
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
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Tanks in Series
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Dispersion Model

In addition to transport by bulk flow, UAcC, 

every  component  in  the  mixture  i s 

transported through any cross section of the 

reactor at a rate equal to [-DaAc(dC/dz)] 

resulting from molecular and convective 

diffusion.

By convective diffusion (i.e, dispersion) we mean either Aris-Taylor dispersion in 

laminar flow reactors or turbulent diffusion resulting from turbulent eddies.

Radial concentration profiles for plug flow (a) and a representative axial and 

radial profile for dispersive flow (b) are shown in Figure 14-1.

Some molecules will diffuse forward ahead of molar average velocity while others 

will lag behind. 
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Figure 14-5 presents how dispersion causes the pulse 

to broaden as it moves down the reactor and becomes 

less concentrated.

cT
T

aT AUC
z

C
DF 








+




−=

The molar flow rate of tracer (FT) by 

both convection and dispersion is

Da is the effective dispersion coefficient (m2/s)

U is the superficial velocity (m/s)
There is a concentration gradient on both 

sides of the peak causing molecules to 

diffuse away from the peak and thus 

broaden the pulse. The pulse broadens 

as it moves through the reactor.

A mole balance on the inert tracer T gives

t

C
A

z

F T
c

T




=




−

t

C

z

)UC(

z

C
D TT

2

T
2

a



=




−




CT vs. t
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Flow, Reaction, and Dispersion

Balance Equations

A mole balance is taken on a particular component of the mixture (say, species A) over 

a short length z of a tubular reactor of cross section Ac, to arrive at 

0r
dz

dF

A

1
A

A

c

=+−

A
A

a

c

A UC
dz

dC
D

A

F
+−=

0
U

r

dz

dC

dz

Cd

U

D AA

2

A
2

a =+−

A second-order ordinary differential equation. 

Nonlinear when rA is other than zero or fist order. 

AA kCr −=
0

U

kC

dz

dC

dz
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U

D AA

2

A
2

a =
−

+−
l

z
••,

C

C

0A

A ==

0Da
d

d

d

d

Pe

1
2

2

r

=−



−





aD

U

sion•or•disper•diffusionansport•byRate•of•tr

n•convectioansport•byRate•of•tr
Pe

k
ection•A•by•convansport•ofRate•of•tr

actionof•A•by•rensumption•Rate•of•co
Da

l
==

==

l is the characteristic length

Da:Damkohler number

Pe:Peclet number
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let•number•fluid•Pec)tube•for•empty•(•
D

Ud
•),•bedfor•packed(•

D

Ud
Pe

berPeclet•num••reactor•
D

U
Pe

a

t

a

p

f

a

r


=

=
L

For open tubes

Per ~ 106, Pef ~ 104

For packed beds

Per ~ 103, Pef ~ 101

Boundary Conditions

closed-closed vessel
there is no dispersion or radial variation in 

concentration either upstream (closed) or 

downstream (closed) of the reaction section 

open-open vessel
dispersion occurs both upstream (open) and 

downstream (open) of the reaction section 

A closed-open vessel boundary condition is one in which there is no dispersion in the 

entrance section but there is dispersion in the reaction and exit section.
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Closed-Closed Vessel Boundary Condition
0- 0+
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Danckwerts boundary conditions

open-open vessel
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Back to the Solution for a Closed-Closed System

0Da
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d

d
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outside the limited case of a first-order 

reaction, a numerical solution of the 

equation is required, and because this is 

s split-boundary-value problem, an 

iterative technique is required. 

Finding Da and Peclet Number

1.Laminar flow with radial and axial molecular diffusion theory

2.Correlation from the literature for pipes and packed beds

3.Experimental tracer data
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Dispersion in a Tubular Reactor with Laminar Flow

•••
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2

R

r
1U2)r(u

The axial velocity varies in the radial direction according to the Hagen-Poiseuille equation:

U is the average velocity

In arriving at this distribution E(t), it was assumed that 

there are no transfer of molecules in the radial direction 

between streamlines.

•7/8•••t8/U7•••u4/R3r

2/U••••••t2••••••u0r

===

===

In addition to the molecules diffusing between 

streamlines, they can also move forward or 

backward relative to the average fluid velocity 

by molecular diffusion (Fick’s law).
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The convective-diffusion equation for solute (e.g., tracer) transport in both the axial and 

radial direction can be obtained. 
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Correlations for Da

Dispersion for Laminar and Turbulent Flow in Pipes

Dispersion in Packed Beds

dt is the tube diameter

Sc is the Schmidt number

dp is the particle diameter

 is the porosity
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Experimental Determination of Da
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For the different types of boundary conditions at 
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Unsteady-State Tracer Balance
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Solution for a Closed-Closed System
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Solution for a Open-Open System
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Sloppy Tracer Inputs

It is not always possible to inject a tracer pulse cleanly 

as an input  to a  system because i t  takes a 

finite time to inject the reactor.

When the injection does not approach a perfect input 

(Figure 14-14), the differences in the variances between 

the  inpu t  and  ou tpu t  t r ace r  measuremen t s 

are used to calculate the Peclet number:

2
o ut

2
in

2 −=

in
2 is the variance of the tracer measured at some point upstream (near the entrance) 

out
2 is the variance of the tracer measured at some point downstream (after the exit) 

r
2
m

2

Pe

2

t
=



For an open-open system
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Example 2-2

The first-order reaction

A→B

is carried out in a 10-cm-diameter tubular reactor 6.36 m in length. The specific reaction rate is 0.25 

min-1. The results of a tracer test carried out this reactor are shown in Table E14-2.1.

Calculate conversion using (a) the closed vessel dispersion model, (b) PFR, (c) the tanks-in-series 

model, and (d) a single CSTR.
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Single CSTR: X=56.3%
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Tanks-in-Series Model Versus Dispersion Model

For first-order reactions, the two models can be applied with equal ease.

However, the tanks-in-series model is mathematically easier to use to obtain the 

effluent concentration and conversion for reaction orders other than one and 

for multiple reactions.

These two models are equivalent when the Peclet-Bodenstein number is related to 

the number of tanks in series, n, by the equation  

)1n(2Bo −= 1
2

Bo
n +=

Bo=UL/Da

U is the superficial velocity

L is the reactor length

Da is the dispersion coefficient
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For reactions other than first order,

X(n=4)<X<X(n=5)
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Two-Parameter Models-Modeling Real Reactors 

with Combinations of Ideal Reactors

Real CSTR Modeled Using Bypassing and Dead Space

A CSTR is believed to modeled as a combination of an ideal CSTR of volume Vs, a 

dead zone of volume Vd, and a bypass with a volumetric flow rate vb (Figure 14-15)

We have used a tracer experiment to 

evaluate the parameters of the model Vs 

and vs. Because the total volume and 

volumetric flow rate are known, once Vs 

and vs are found, vb and Vd can readily 

be calculated.
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Solving the Model System for CA and X

BA →

Considering the first-order reaction
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Using a Tracer to Determine the Model Parameters in 
CSTR-with-Dead-Space-and-Bypass Model

We shall inject our tracer, T, as a positive step input. The unsteady-state balance 

on the nonreacting tracer T in the reactor volume Vs is
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Example 2-3
The elementary reaction 

A+B→C+D

is to be carried out in the CSTR shown schematically in Figure 14-15. There is both bypassing 

and a stagnant region in this reactor. The tracer output for this reactor is shown in Table E14-4.1. 

The measured reactor volume is 1.0 m3 and the flow rate to the reactor is 0.1 m3/min. The 

reaction rate constant is 0.28 m3/kmolmin. The feed is equimolar in A and B with an entering 

c o n c e n t r a t i o n  o f  A e q u a l  t o  2 . 0  k m o l / m 3 .  C a l c u l a t e  t h e  c o n v e r s i o n 

that can be expected in this reactor (Figure E14-4.1).  

CT0=2000 mg/dm3
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A mole balance on Vs gives
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Real CSTR Modeled as Two CSTRs with Interchange

In this particular model there is a highly agitated region in the vicinity of the 

impeller; outside this region, there is a region with less agitation (Figure 14-17).  

There is considerable material transfer 

between the two regions. Both inlet and 

outlet flow channels connect to the highly 

agitated region. We shall model the 

highly agitated region as one CSTR, the 

quieter region as another CSTR, with 

material transfer between the two.  

Solving the Model System for CA and X
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Using a Tracer to Determine the Model Parameters in a 

CSTR with an Exchange Volume
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Example 2-4

(a) Determine parameter  and  that can be used to model two CSTRs with interchange 

      using the tracer concentration data listed in Table E14-5.1. 

(b) Determine the conversion of first-order reaction with k=0.03 min-1 and =40 min.

Solution
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CTe is the exit concentration of tracer determined experimentally.
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Other Models of Nonideal Reactors Using CSTRs and 
PFRs

Figure 14-18(a) describes a real PFR or PBR 

with channeling that is modeled as two 

PFRs/PBRs in parallel. The two parameters 

are the fraction of flow to the reactors [i.e.,  

a n d  ( 1 -  ) ]  a n d  t h e  f r a c t i o n 

volume [i.e.,  and (1-)] of each reactor. 

Figure 14-18(b) describes a real PFR/PBR 

has a backmix region and is modeled as a 

PFR/PBR in parallel with a CSTR. 
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Figure 14-19 (a) and (b) show a real CSTR modeled as two CSTRs with 

interchange. In one case, the fluid exits from the top CSTR (a) and in other 

case the fluid exits from the bottom CSTR (b).

T h e  p a r a m e t e r   

r e p r e s e n t s  t h e 

interchange volumetric 

flow rate and  the 

fractional volume of 

the top reactor, where 

t h e  f l u i d  e x i t s 

the reaction system.
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Closure

~In this section, models were developed for existing reactors to obtain a more 

  precise estimate of the exit conversion and concentration than estimates of 

  the examples given by the zero-order parameter models of segregation and 

  maximum mixedness.

~After completing this section, the student will use the RTD data and kinetic 

  rate law and reactor model to make predictions of the conversion and exit 

  concentrations using the tank-in-series and dispersion one-parameter 

  models. 

~In addition, the student should be able to create combinations of ideal 

  reactors that mimic the RTD data and to solve for the exit conversions and 

  concentrations.

~Models of real reactors usually consist of combinations of PFRs, perfectly 

  mixed CSTRs, and dead spaces in a configuration that matches the flow 

  patterns in the reactor.

~For tubular reactors, the simple dispersion model has proven most popular.
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~The parameters in the model, which with rare exception should not 

  exceed two in number, are obtained from the RTD data. Once the 

  parameters are evaluated, the conversion in the model, and thus in the 

  real reactor can be calculated.

~For typical tank-reactor models, this is the conversion in a series-

  parallel reactor system. For the dispersion model, the second-order 

  differential equation must be solved, usually numerically.

~Analytical solution exist for first-order reactions, but as pointed out 

  previously, no model has to be assumed for the first-order system if 

  the RTD is available. 

~Correlations exist for the amount of dispersion that might be expected 

  in common packed-bed reactors, so these systems can be designed 

  using the dispersion model without obtaining or estimating the RTD. 

  This situation is perhaps the only one where an RTD is not necessary 

  for designing a nonideal reactor.  



Introduction

• This presentation covers models for nonideal 
reactors with a focus on residence time distribution 
(RTD) and reactor flow behavior.



Topics to be Addressed

• - Residence Time Distribution (RTD)

• - Nonideal Flow Patterns

• - Models for Mixing

• - Calculation of Exit Conversion

• - Reactor Performance Assessment



Objectives

• - Understand the principles of nonideal flow in 
reactors

• - Learn how to use RTD for analyzing reactor 
performance

• - Apply mathematical models for mixing and 
conversion calculation

• - Compare different reactor modeling approaches
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